定制化设计一站式临时空间解决方案
高端产品行业领先进口生产线
核心技术装配式移动建筑系统
如何解决电子元器件遭遇高温环境使用效能大打折扣的技术瓶颈?近日,国际权威期刊《Advanced Materials》(影响因子:29.4)在线刊发了华中科技大学高亮教授团队关于热学超材料拓扑优化设计的最新研究成果“Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials(深度学习赋能的热学超材料智能设计)”。该成果有效突破了热学超材料智能设计的技术瓶颈,设计了“热隐衣”,可屏蔽外部温度场对器件内部物体的干扰,实现主动隔热,可用于热敏元器件的热防护。
通过设计热学超材料的结构构型,可实现热流的操纵与控制,从而获得超常热功能,如:热隐身、热集中、热伪装、热旋转等。热学超材料设计涉及高维设计空间、多个局部极值、巨大计算成本,以及热学属性与单胞结构间存在多种对应关系等,给热学超材料的智能设计带来了挑战,即自动、实时、可定制化地设计热学超材料。
针对上述挑战,研究团队提出了深度学习赋能的热学超材料拓扑优化设计方法,实现了自由形状热学超材料的智能设计。该方法采用深度生成模型,将拓扑功能单胞概率表示在隐空间,根据热学超材料的定制功能需求,可自动、实时地生成具有目标热传导张量的拓扑功能单胞,进而快速生成热学超材料。基于上述思路,研究团队设计了多种具有自由形状、背景温度独立、全方向功能的热隐身超材料,并通过数值仿真和热学实验验证了其良好的热隐身效果。
上述研究工作也为热学超材料的智能设计提供了全新思路,可灵活实现不同背景材料、自由形状和不同热功能的热学超材料的快速设计,解决了传统热学超材料设计中大规模有限元计算与反复优化迭代所带来的计算效率低的难题,进一步推动了热学超材料在航空航天、电子等领域的工程应用。
返回